
Designing Multithreaded Programs
in C++0x

Anthony Williams

Just Software Solutions Ltd
http://www.justsoftwaresolutions.co.uk

23rd April 2009

http://www.justsoftwaresolutions.co.uk


Designing Multithreaded Programs in C++0x

Why multithreading is hard

Overview of the C++0x tools to help

Examples

Testing and designing concurrent code

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C++0x

http://www.justsoftwaresolutions.co.uk


Multithreading is Hard

It’s not the threads themselves, it’s the communication that
causes problems.

Mutable shared state introduces implicit communication.

The number of possible states increases dramatically as the
number of threads increases.

There are several concurrency-specific types of bugs.

The performance of different approaches can vary
considerably, and performance consequences are not obvious.

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C++0x

http://www.justsoftwaresolutions.co.uk


C++0x Tools for Multithreading

The C++0x toolset is deliberately basic, but there’s a couple of
real gems. The standard provides:

Thread Launching

Mutexes for synchronization

Condition variables for blocking waits

Atomic variables for low-level code

Futures for high level concurrency design

std::lock() for avoiding deadlock

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C++0x

http://www.justsoftwaresolutions.co.uk


Futures

A future is a “token” for a value that will be available later

Focus on communication between threads

Synchronization details left to library

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C++0x

http://www.justsoftwaresolutions.co.uk


C++0x Support for Futures

std::unique future and std::shared future — akin to
std::unique ptr and std::shared ptr

std::packaged task where the value is the result of a
function call

std::promise where the value is set explicitly

(Possibly) std::async() — library manages thread for the
function call

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C++0x

http://www.justsoftwaresolutions.co.uk


std::unique future / std::shared future

get() blocks until result available and then

Returns stored value or
Throws stored exception

Use wait() to wait without retrieving the result

Use is ready(), has value() and has exception() to
query the state.

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C++0x

http://www.justsoftwaresolutions.co.uk


std::async()

Run a function asynchronously and get a future for the return
value:

int find_the_answer_to_LtUaE();
std::unique_future<int> the_answer=

std::async(find_the_answer_to_LtUaE);

std::cout<<the_answer.get()<<std::endl;

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C++0x

http://www.justsoftwaresolutions.co.uk


std::async()

Run a function asynchronously and get a future for the return
value:

int find_the_answer_to_LtUaE();
std::unique_future<int> the_answer=

std::async(find_the_answer_to_LtUaE);

std::cout<<the_answer.get()<<std::endl;

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C++0x

http://www.justsoftwaresolutions.co.uk


Approximating std::async()

std::async() is not yet in the working paper, and may not
make it into C++0x. You can write a version that always starts
a new thread quite simply:

std::unique_future<typename std::result_of<Func()>::type>
async(Func f)
{

typedef typename std::result_of<Func()>::type
result_type;

std::packaged_task<result_type()> task(f);
std::unique_future<result_type> uf(task.get_future());
std::thread t(std::move(task));
t.detach();
return uf;

}

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C++0x

http://www.justsoftwaresolutions.co.uk


Numerical Integration

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C++0x

http://www.justsoftwaresolutions.co.uk


Exception Safety with async()

int sum(int* start,int* end)
{

return std::accumulate(start,end,0);
}

void foo()
{

int x[]={...};
std::unique_future<int> res=

async(std::bind(sum,
&x,x+sizeof(x)/sizeof(int)));

throw some_exception();
} // async call still running?

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C++0x

http://www.justsoftwaresolutions.co.uk


RAII to the rescue (1)

template<typename T>
class future_waiter
{

std::unique_future<T>& future;
public:

explicit future_waiter(std::unique_future<T>& f):
future(f)

{}
~future_waiter()
{

future.wait();
}

};

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C++0x

http://www.justsoftwaresolutions.co.uk


RAII to the rescue (2)

Our leaky code now becomes:

void foo()
{

int x[]={...};
std::unique_future<int> res=

async(std::bind(sum,
&x,x+sizeof(x)/sizeof(int)));

future_waiter w(res);
throw some_exception();

}

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C++0x

http://www.justsoftwaresolutions.co.uk


Controlling Threads Manually

Threads are managed manually with std::thread.

Start a thread with the std::thread constructor

Wait for a thread with t.join()

Leave a thread to run in the background with t.detach()

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C++0x

http://www.justsoftwaresolutions.co.uk


Lifetime issues with std::thread (1)

If you don’t call join() or detach() on a thread, the destructor
calls std::terminate().

void do_stuff()
{}

int main()
{

std::thread t(do_stuff);
} // thread not joined or detached

// => std::terminate() called.

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C++0x

http://www.justsoftwaresolutions.co.uk


Lifetime issues with std::thread (2)

The call to std::terminate() from the destructor protects
against lifetime-related race conditions:

void update_value(int* value)
{

*value=42;
}

int main()
{

int i;
std::thread t(update_value,&i);

} // thread may still be running and accessing i
// => std::terminate() called.

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C++0x

http://www.justsoftwaresolutions.co.uk


Lifetime issues with std::thread (3)

Even if you join at the end of the scope, you’ve still got the
potential for problems:

void foo()
{

int i;
std::thread t(update_value,&i);
do_something(); // may throw
t.join();

} // if exception thrown, join() call skipped

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C++0x

http://www.justsoftwaresolutions.co.uk


Lifetime issues with std::thread (4)

Again, you can handle this with RAII:

class thread_guard
{

std::thread& t;
public:

explicit thread_guard(std::thread& t_):
t(t_)

{}
~thread_guard()
{

if(t.joinable())
t.join();

}
};

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C++0x

http://www.justsoftwaresolutions.co.uk


Lifetime issues with std::thread (5)

Our troublesome code now looks like this:

void foo()
{

int i;
std::thread t(update_value,&i);
thread_guard guard(t);
do_something(); // may throw

} // if exception thrown, join() still called

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C++0x

http://www.justsoftwaresolutions.co.uk


Key points

You must explicitly join or detach every thread in all code
paths.

You must ensure that a thread or asynchronous task is
finished before the data it accesses is destroyed.

RAII can help with both of these.

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C++0x

http://www.justsoftwaresolutions.co.uk


Passing a series of data items

Futures are for single data items. What about a series of items?

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C++0x

http://www.justsoftwaresolutions.co.uk


Passing a series of data items (2)

To pass a series of items in order we need a queue — add items on
one end take them off the other.

std::queue would do the job, but it’s not thread-safe.

The simplest solution is therefore to use a std::queue protected
by a mutex.

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C++0x

http://www.justsoftwaresolutions.co.uk


Building a concurrent queue

template<typename Data>
class concurrent_queue
{

std::mutex the_mutex;
std::queue<Data> the_queue;

public:
void push(Data const& data)
{

std::lock_guard<std::mutex> lk(the_mutex);
the_queue.push(data);

}
// other member functions

};

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C++0x

http://www.justsoftwaresolutions.co.uk


Racy interfaces

A mutex doesn’t save us from bad interface design. std::queue’s
interface is not designed for concurrency.

Thread A Thread B

if(q.empty()) return;
if(q.empty()) return;

Data local=q.front();
Data local=q.front();

q.pop();
q.pop();

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C++0x

http://www.justsoftwaresolutions.co.uk


Encapsulate entire operation under single lock

We need to group the calls to empty(), front() and pop() under
the same mutex lock to avoid races:

bool concurrent_queue::try_pop(Data& data)
{

std::lock_guard<std::mutex> lk(the_mutex);
if(the_queue.empty()) return false;
data=the_queue.front();
the_queue.pop();
return true;

}

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C++0x

http://www.justsoftwaresolutions.co.uk


Waiting for an item

If all we’ve got is try pop(), the only way to wait is to poll:

concurrent_queue<my_class> q;
my_class d;

while(!q.try_pop(d))
std::this_thread::yield(); // or sleep

do_stuff(d);

This is not ideal.

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C++0x

http://www.justsoftwaresolutions.co.uk


Performing a blocking wait

We want to wait for a particular condition to be true (there is an
item in the queue).
This is a job for std::condition variable:

void concurrent_queue::wait_and_pop(Data& data)
{

std::unique_lock<std::mutex> lk(the_mutex);
the_cv.wait(lk,

[&the_queue]()
{return !the_queue.empty();});

data=the_queue.front();
the_queue.pop();

}

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C++0x

http://www.justsoftwaresolutions.co.uk


Signalling a waiting thread

To signal a waiting thread, we need to notify the condition variable
when we push an item on the queue:

void concurrent_queue::push(Data const& data)
{

{
std::lock_guard<std::mutex> lk(the_mutex);
the_queue.push(data);

}
the_cv.notify_one();

}

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C++0x

http://www.justsoftwaresolutions.co.uk


Contention

We only have one mutex protecting the data, so only one
push() or one pop() can actually do any work at any one
time.

This can actually have a negative impact on performance
when using multiple threads if the contention is too high.

Can address this with multiple mutexes or a lock-free queue,
but the complexity is much higher.

Lowering contention is usually a better option.

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C++0x

http://www.justsoftwaresolutions.co.uk


Key points

Mutexes don’t protect you if your interface is racy.

Put entire operation inside one lock to avoid races.

Condition variables allow blocking waits.

std::lock guard and std::unique lock provide RAII
locking.

Notify with mutex unlocked for maximum performance.

Contention is still a performance killer.

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C++0x

http://www.justsoftwaresolutions.co.uk


Deadlock example

Suppose you have a class with some internal state, which you’ve
protected with a mutex in order to make it thread-safe. Suppose
also you want to write a comparison operator:

class X {
mutable std::mutex the_mutex;
int some_data;

public:
bool operator<(X const& other) {

std::lock_guard<std::mutex> lk(the_mutex);
std::lock_guard<std::mutex> lk(other.the_mutex);
return some_data < other.some_data;

}
};

This seems perfectly safe at first glance...
Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C++0x

http://www.justsoftwaresolutions.co.uk


Deadlock (2)

... but it isn’t! If you’ve got two objects x1 and x2, and two
threads are trying to compare them, but different ways round:

Thread A Thread B

if(x1 < x2) ... if(x2 < x1) ...

The two threads will acquire the mutexes in opposite orders, which
provides the possibility of deadlock.

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C++0x

http://www.justsoftwaresolutions.co.uk


Use std::lock to avoid deadlocks

If you do need to acquire two (or more) locks in order to perform
an operation, std::lock is your friend. It guarantees to lock all
the supplied mutexes without deadlock, whatever order they are
given in. Our code then becomes:

bool X::operator<(X const& other)
{

std::unique_lock<std::mutex> l1(the_mutex,
std::defer_lock);

std::unique_lock<std::mutex> l2(other.the_mutex,
std::defer_lock);

std::lock(l1,l2);
return some_data < other.some_data;

}

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C++0x

http://www.justsoftwaresolutions.co.uk


Key points

You can construct a std::unique lock without locking
using the std::defer lock parameter.

std::lock avoids deadlock for locks acquired together.

It works on any Lockable object.

You can still get deadlock if locks acquired separately.

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C++0x

http://www.justsoftwaresolutions.co.uk


Concurrency-related Bugs

There are essentially two types of concurrency-related bug:

Race Conditions: Data Races, broken invariants, lifetime
issues

Unwanted blocking: Deadlock, livelock

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C++0x

http://www.justsoftwaresolutions.co.uk


Locating concurrency-related bugs

Write simple testable code

Limit communication between threads to self-contained
sections

Code reviews

More code reviews

Brute force testing

Combination simulation testing

Testing with a debug library

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C++0x

http://www.justsoftwaresolutions.co.uk


Code Reviews

Here’s a few things to think about when reviewing multithreaded
code:

Where are the communication paths?

Which data is shared?

How is the shared data protected?

Where could other threads be when this thread is here?

Which mutexes does this thread hold?

Which mutexes can other threads hold?

Is the data still valid?

If the data could be changed, how can we avoid this?

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C++0x

http://www.justsoftwaresolutions.co.uk


Considerations for designing concurrent code

How to divide work between threads

Before processing begins (e.g. static problems, problem size
fixed at runtime)
Dynamically during processing (e.g. recursive problems)
Divide by task type (e.g. pipeline architecture)

Performance

Cost of launching a thread and thread communication
Data Proximity
Contention

False sharing

Oversubscription

Exception Safety

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C++0x

http://www.justsoftwaresolutions.co.uk


References and Further Reading

The current C++0x committee draft: N2857
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/
2009/n2857.pdf

My blog: http://www.justsoftwaresolutions.co.uk/blog/

The documentation for my just::thread library is available
online at http://www.stdthread.co.uk/doc/

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C++0x

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2857.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2857.pdf
https://www.justsoftwaresolutions.co.uk/blog/
http://www.stdthread.co.uk/doc/
http://www.justsoftwaresolutions.co.uk


just::thread

just::thread provides a complete implementation of the C++0x
thread library for MSVC 2008. gcc/linux support is currently in
alpha testing.

For a 25% discount go to:

http://www.stdthread.co.uk/accu2009

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C++0x

http://www.stdthread.co.uk/accu2009
http://www.justsoftwaresolutions.co.uk


My book

C++ Concurrency in Action: Practical
Multithreading with the new C++
Standard, currently available under the
Manning Early Access Program at

http://www.manning.com/williams/

Enter discount code aupromo40 for a 40% discount.

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C++0x

http://www.manning.com/williams/
http://www.justsoftwaresolutions.co.uk

